Chronic lymphocytic leukemia (CLL) presents with heterogeneous clinical outcomes, suggesting varied underlying pathogenic mechanisms. This study aims to elucidate the impact of T follicular helper (Tfh) cells on CLL progression and prognosis. Gene expression profile data for CLL were collected from GSE22762 and GSE39671 datasets. Patients were divided into high and low groups using Tfh levels using the optimal cutoff value based on overall survival (OS) and time-to-first treatment (TTFT). Differential expression analysis was performed between these groups, followed by co-expression network analysis and single-sample Gene Set Enrichment Analysis (ssGSEA). Marker genes of Tfh cells were used to construct prognostic models. Additionally, 40 CLL patients were recruited and categorized based on median Tfh levels. Marker gene expression was assessed using RT-qPCR and Western Blot, and immune cell levels were determined through flow cytometry. The high group showed better prognosis compared to the low group. Among the 1121 differentially expressed genes identified, five co-expression networks were constructed, with the turquoise module showing the highest correlation with Tfh cells. Genes within this module significantly participate in cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, and natural killer cell mediated cytotoxicity. Tfh cells were significantly negatively correlated with activated B cells and positively correlated with Tregs. The Random Survival Forest (RSF) model identified 10 marker genes, and further analysis using Lasso regression and nomogram selected CLEC4A, RAE1, CD84, and PRDX1 as prognostic markers. In the high group, levels of CLEC4A and RAE1 were higher than in the low group, whereas CD84 and PRDX1 were lower. Flow cytometry revealed that the level of activated B cells in the high Tfh group was significantly lower than in the low Tfh group, while the level of Tregs is significantly higher in the high Tfh group. This study seeks to contribute to a more detailed understanding of the pathogenesis of CLL, delving into the prognostic significance of Tfh.