Extranodal NK/T-cell lymphoma (ENKTL) generally expresses cytotoxic molecules, including granzyme B (GZMB), T-cell-restricted intracellular antigen-1 (TIA-1), and perforin; however, the expression of these molecules varies across cases. We performed gene expression profiling and identified unique biological and clinicopathological features of GZMB-negative ENKTL. We reviewed the clinicopathological characteristics of 71 ENKTL samples. Gene expression profiling on nine ENKTLs using multiplexed, direct, and digital mRNA quantification divided ENKTLs into Groups A (n = 7) and B (n = 2) through hierarchical clustering and t-distributed stochastic neighbor embedding. Group B was characterized by downregulation of genes associated with IL6-JAK-STAT3 signaling and inflammatory responses. GZMB mRNA expression was significantly downregulated in Group B. GZMB protein expression was evaluated with immunohistochemistry in all 71 ENKTLs, and expression data of Tyr705-phosphorylated STAT3 (pSTAT3) and MYC from our previous study was utilized. T-cell receptor gamma (TRG) gene rearrangement in the selected samples was also assessed using PCR. GZMB expression was higher in pSTAT3-positive (p = 0.028) and MYC-positive (p = 0.014) ENKTLs. Eighteen percent (13/71) of all ENKTLs were negative for GZMB (defined by positivity <10 %); patients with GZMB-negative ENKTLs were often in a higher clinical stage (p = 0.016). We observed no other correlations with clinical parameters or TRG rearrangement and no significant association between GZMB expression and survival. In conclusion, GZMB expression is highly heterogeneous in ENKTLs and is associated with the activation of the JAK-STAT3 pathway and higher MYC expression. GZMB-negative ENKTLs correlate with an advanced clinical stage, suggesting the potential utility of GZMB immunohistochemistry as a biomarker of ENKTL.
Read full abstract