Wireless network virtualization, which decouples the physical supply process and the service provisioning process, can abstract, isolate, and share the physical infrastructure network equipment. This paper studies the resource virtualization in virtual multiple-input multiple-output single-carrier frequency-division-multiple-access uplink systems, where resources are abstracted to hide the complex details of the fading channel and the link rates are virtualized using the statistical method. Furthermore, the virtual link rates are scheduled and instantiated to different slices with customized delay-bounded quality of service (QoS) provisioning. In this scheme, a physical mobile network operator (PMNO) is in charge of the network resource at the physical layer, while virtual mobile network operators (VMNOs) are responsible for the traffic admission and the slice management at the MAC layer. Furthermore, we build up the resource virtualization problem as a cross-layer Stackelberg game, which has the interactive dual processes based on the QoS exponent: top-to-down sub-game of leaders at the MAC layer and down-to-top sub-game of follower at the physical layer. Using the newly designed functions for PMNO and VMNOs, we develop an effective dynamic algorithm with an iterative dual update to meet the optimization targets of PMNO and VMNOs. Simulation results verify the superiority and stability of delay-bounded QoS guaranteed wireless resource virtualization algorithm developed in this paper in terms of convergence, access rate, and delay-outage probability.
Read full abstract