We model the process of cell fate determination of the flower Arabidopsis-thaliana employing a system of reaction-diffusion equations governed by a potential field. This potential field mimics the flower's epigenetic landscape as defined by Waddington. It is derived from the underlying genetic regulatory network (GRN), which is based on detailed experimental data obtained during cell fate determination in the early stages of development of the flower. The system of equations has a variational structure, and we use minimax techniques (in particular the Mountain Pass Lemma) to show that the minimal energy solution of our functional is, in fact, the one that traverses the epigenetic landscape (the potential field) in the spatial order that corresponds to the correct architecture of the flower, that is, following the observed geometrical features of the meristem. This approach can generally be applied to systems with similar structures to establish a genotype to phenotype correspondence. From a broader perspective, this problem is related to phase transition models with a multiwell vector potential, and the results and methods presented here can potentially be applied in this case.
Read full abstract