We deal with the form of the solutions for the following systems of rational difference equations <svg style="vertical-align:-4.15506pt;width:209.55px;" id="M1" height="17.362499" version="1.1" viewBox="0 0 209.55 17.362499" width="209.55" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.138)"><path id="x1D465" d="M536 404q0 -17 -13.5 -31.5t-26.5 -14.5q-8 0 -15 10q-11 14 -25 14q-22 0 -67 -50q-47 -52 -68 -82l37 -102q31 -88 55 -88t78 59l16 -23q-32 -48 -68.5 -78t-65.5 -30q-19 0 -37.5 20t-29.5 53l-41 116q-72 -106 -114.5 -147.5t-79.5 -41.5q-21 0 -34.5 14t-13.5 37
q0 16 13.5 31.5t28.5 15.5q12 0 17 -11q5 -10 25 -10q22 0 57.5 36t89.5 111l-40 108q-22 58 -36 58q-21 0 -67 -57l-19 20q81 107 125 107q17 0 30 -22t39 -88l22 -55q68 92 108.5 128.5t74.5 36.5q20 0 32.5 -14t12.5 -30z" /></g> <g transform="matrix(.012,-0,0,-.012,9.563,16.212)"><path id="x1D45B" d="M495 86q-46 -47 -87 -72.5t-63 -25.5q-43 0 -16 107l49 210q7 34 8 50.5t-3 21t-13 4.5q-35 0 -109.5 -72.5t-115.5 -140.5q-21 -75 -38 -159q-50 -10 -76 -21l-6 8l84 340q8 35 -4 35q-17 0 -67 -46l-15 26q44 44 85.5 70.5t64.5 26.5q35 0 10 -103l-24 -98h2
q42 56 97 103.5t96 71.5q46 26 74 26q9 0 16 -2.5t14 -11.5t9.5 -24.5t-1 -44t-13.5 -68.5q-30 -117 -47 -200q-4 -19 -3.5 -25t6.5 -6q21 0 70 48z" /></g><g transform="matrix(.012,-0,0,-.012,15.536,16.212)"><path id="x2B" d="M535 230h-212v-233h-58v233h-213v50h213v210h58v-210h212v-50z" /></g><g transform="matrix(.012,-0,0,-.012,22.52,16.212)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g> <g transform="matrix(.017,-0,0,-.017,33.575,12.138)"><path id="x3D" d="M535 323h-483v50h483v-50zM535 138h-483v50h483v-50z" /></g><g transform="matrix(.017,-0,0,-.017,48.262,12.138)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,54.143,12.138)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,63.662,16.212)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,69.636,16.212)"><path id="x2212" d="M535 230h-483v50h483v-50z" /></g><g transform="matrix(.012,-0,0,-.012,76.62,16.212)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,82.95,12.138)"><path id="x1D466" d="M556 393q0 -39 -36 -106q-42 -78 -185 -279q-47 -66 -81 -108t-117 -135l-112 -26l-8 22q150 90 251 219q-6 136 -39 340q-8 53 -21 53q-6 0 -27 -19.5t-38 -42.5l-16 26q80 111 127 111q23 0 35 -28t20 -90q18 -137 27 -263h2q142 200 142 279q0 24 -14 48q-4 7 5 26
q13 28 43 28q18 0 30 -15.5t12 -39.5z" /></g> <g transform="matrix(.012,-0,0,-.012,92.8,17.162)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,99.388,12.138)"><path id="x2F" d="M368 703l-264 -866h-60l265 866h59z" /></g><g transform="matrix(.017,-0,0,-.017,106.391,12.138)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,112.273,12.138)"><path id="xB1" d="M535 290h-212v-206h-58v206h-213v50h213v193h58v-193h212v-50zM535 -22h-483v50h483v-50z" /></g><g transform="matrix(.017,-0,0,-.017,122.251,12.138)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,131.762,16.212)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,137.736,16.212)"><use xlink:href="#x2212"/></g><g transform="matrix(.012,-0,0,-.012,144.72,16.212)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,154.825,12.138)"><use xlink:href="#xB1"/></g><g transform="matrix(.017,-0,0,-.017,168.577,12.138)"><use xlink:href="#x1D466"/></g> <g transform="matrix(.012,-0,0,-.012,178.425,17.162)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,184.398,17.162)"><use xlink:href="#x2212"/></g><g transform="matrix(.012,-0,0,-.012,191.383,17.162)"><path id="x32" d="M412 140l28 -9q0 -2 -35 -131h-373v23q112 112 161 170q59 70 92 127t33 115q0 63 -31 98t-86 35q-75 0 -137 -93l-22 20l57 81q55 59 135 59q69 0 118.5 -46.5t49.5 -122.5q0 -62 -29.5 -114t-102.5 -130l-141 -149h186q42 0 58.5 10.5t38.5 56.5z" /></g> <g transform="matrix(.017,-0,0,-.017,197.725,12.138)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g><g transform="matrix(.017,-0,0,-.017,203.607,12.138)"><use xlink:href="#x29"/></g> </svg>, <svg style="vertical-align:-4.15506pt;width:209.8875px;" id="M2" height="17.362499" version="1.1" viewBox="0 0 209.8875 17.362499" width="209.8875" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.138)"><use xlink:href="#x1D466"/></g> <g transform="matrix(.012,-0,0,-.012,9.9,17.162)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,15.873,17.162)"><use xlink:href="#x2B"/></g><g transform="matrix(.012,-0,0,-.012,22.858,17.162)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,33.912,12.138)"><use xlink:href="#x3D"/></g><g transform="matrix(.017,-0,0,-.017,48.616,12.138)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,54.498,12.138)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,64,16.212)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,70.6,12.138)"><use xlink:href="#x1D466"/></g> <g transform="matrix(.012,-0,0,-.012,80.438,17.162)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,86.411,17.162)"><use xlink:href="#x2212"/></g><g transform="matrix(.012,-0,0,-.012,93.395,17.162)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,99.738,12.138)"><use xlink:href="#x2F"/></g><g transform="matrix(.017,-0,0,-.017,106.741,12.138)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,112.623,12.138)"><use xlink:href="#xB1"/></g><g transform="matrix(.017,-0,0,-.017,122.601,12.138)"><use xlink:href="#x1D466"/></g> <g transform="matrix(.012,-0,0,-.012,132.438,17.162)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,138.411,17.162)"><use xlink:href="#x2212"/></g><g transform="matrix(.012,-0,0,-.012,145.395,17.162)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,155.512,12.138)"><use xlink:href="#xB1"/></g><g transform="matrix(.017,-0,0,-.017,169.247,12.138)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,178.762,16.212)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,184.736,16.212)"><use xlink:href="#x2212"/></g><g transform="matrix(.012,-0,0,-.012,191.72,16.212)"><use xlink:href="#x32"/></g> <g transform="matrix(.017,-0,0,-.017,198.062,12.138)"><use xlink:href="#x29"/></g><g transform="matrix(.017,-0,0,-.017,203.944,12.138)"><use xlink:href="#x29"/></g> </svg>, with nonzero real numbers initial conditions. Also we investigate some properties of the obtained solutions and present some numerical examples.