Derive the quantitative predictions of constraint-based models require of conversion algorithms to enumerate and construct the skeleton graph conformed by the extreme points of the feasible region, where all constraints in the model are fulfilled. The conversion is problematic when the system of linear constraints is degenerate. This paper describes a conversion algorithm that combines the best of two methods: the incremental slicing of cones that defeats degeneracy and pivoting for a swift traversal of the set of extreme points. An extensive computational practice uncovers two complementary classes of conversion problems. The two classes are distinguished by a practical measure of complexity that involves the input and output sizes. Detailed characterizations of the complexity classes and the corresponding performances of the algorithm are presented. For the benefit of implementors, a simple example illustrates the stages of the exposition.
Read full abstract