Sensing materials derived from natural and biodegradable sources are increasingly being developed and applied to realize environmentally friendly technologies. In this paper, we present the synthesis, characterization, and application of a novel copper abietate/polyvinyl acetate (CuA/PVAc) composite film, specifically engineered to enhance the humidity-sensing capabilities of Chinese herbal medicine monitoring systems. The sensing material was synthesized by strategically melding copper abietate, a natural renewable material, with PVAc to exploit their combined synergistic properties for optimal humidity-sensing performance. Comprehensive characterization techniques, including inductively coupled plasma optical emission spectrometry (ICP-OES), field-emission scanning electron microscopy (FESEM), water contact angle measurements, and Fourier transform infrared (FT-IR) spectroscopy, were employed to confirm the formation of CuA/PVAc composites. These analyses confirmed the homogeneity and intended chemical composition of the composite films.The resultant CuA-1/PVAc-4 (0.4 μg/μL) composite film exhibited a good logarithmic relation (0.9988) with relative humidity (RH) over a wide range (11 %–97 %) and high sensitivity (24.55 Hz/%RH). Moreover, this study introduces a novel, eco-friendly approach by integrating the CuA/PVAc composite with a quartz crystal microbalance (QCM) sensor and a sophisticated wireless circuit that enables real-time, Wi-Fi-based humidity monitoring tailored for the preservation of Chinese herbal medicines. The implementation of this wireless humidity detection system represents a significant advancement in the application of environmentally friendly materials in sensor technology and offers a practical and scalable approach for precise environmental monitoring.
Read full abstract