Steroidogenic factor-1/adrenal 4-binding protein (SF-1/Ad4BP) is an orphan nuclear receptor/transcription factor known to regulate the P450 steroid hydroxylases; however, mechanisms that regulate the activity of SF-1/Ad4BP are not well defined. In addition, little is known about the mechanisms that regulate the human steroidogenic enzyme, type II 3beta-hydroxysteroid dehydrogenase (3beta-HSD II), the major gonadal and adrenal isoform. Regulation of the 3beta-HSD II promoter was examined using human adrenal cortical (H295R; steroidogenic) and cervical (HeLa; non-steroidogenic) carcinoma cells. H295R cells were transfected with a series of 5' deletions of 1251 base pairs (bp) of the 3beta-HSD II 5'-flanking region fused to a chloramphenicol acetyltransferase (CAT) reporter gene followed by treatment with or without phorbol ester (phorbol 12-myristate 13-acetate; PMA). CAT assay data indicated that the region from -101 to -52 bp of the promoter was required for PMA-induced expression. A putative SF-1/Ad4BP regulatory element, TCAAGGTAA, was identified by sequence homology at -64 to -56 bp of the promoter. Cotransfection of HeLa cells with the -101 3beta-HSD-CAT construct and an expression vector for SF-1/Ad4BP increased CAT activity 49-fold. Subsequent treatment with PMA induced an unexpected synergistic increase in transcriptional activity 540-fold over basal. Mutation of the putative response element (TCAAGGTAA to TCAATTTAA) abolished SF-1-induced CAT activity and the synergistic response to PMA. Gel mobility shift assays confirmed that SF-1/Ad4BP interacts with the putative element and transcripts for SF-1/Ad4BP were detected in H295R cells by Northern analysis. These data are the first to demonstrate 1) regulation of a non-cytochrome P450 steroidogenic enzyme promoter by SF-1/Ad4BP, 2) a powerful synergistic effect of PMA on SF-1/Ad4BP-induced transcription, and 3) the importance of the SF-1/Ad4BP regulatory element in the regulation of the 3beta-HSD II promoter.
Read full abstract