Unmanned Aerial Systems (UAS) have garnered significant interest in recent years. These systems, commonly consisting of one or more Unmanned Aerial Vehicles (UAV) and satellite systems, have been extensively used to enhance the effectiveness of various SOSs, such as disaster management and relief efforts. In addition, the inaugural Mars unmanned helicopter, Ingenuity (Ginny), successfully took flight in April 2021, marking the beginning of the utilization of these systems on Mars. This research aims to build an integrated approach for developing Interlaced Unmanned Spatial Systems, considering the high level of precision required for space systems. This study aims to set up and optimize all parts of the proposed architecture for the design of IUSS, using Model-Based Systems Engineering theories and Dependency Structural Matrix foundations. This research introduces a comprehensive coherence architecture that considers all design domains, including the design process, design office, products, and requirements. Additionally, a design workflow model is provided.