Inter-story isolation systems, as an alternative earthquake protection system, reduce in-building movement compared to base isolation systems. In this context, the current study focuses on simultaneously optimizing the topology and capacity of base and inter-story isolation systems for a multi-story building exposed to multiple earthquake scenarios. In addressing this challenge, an optimization model is developed that simultaneously considers both the topology (vertical arrangement) and capacity (required stiffness) of the seismic isolators as the decision variables of the model. To attain more practical and feasible solutions, the side constraints of the problem involve the inter-story drift and the total cost of seismic isolation systems. A gradient-free and self-adaptive search method, Fuzzy Differential Evolution incorporated Virtual Mutant (FDEVM), is employed to solve the optimization problem. The FDEVM approach applies a fuzzy mechanism to adopt its search behavior with governing condition(s) of the current problem. The selected method's performance is implicitly compared with its standard version. The obtained results indicate that optimally placing inter-story isolators with an optimal configuration and capacity not only improves the seismic performance of the systems but also its more cost-efficient approach compared with conventional based isolation systems. Also, the comparative outcomes indicate that the FDEVM method exhibits a high search capability for this class of problems.
Read full abstract