The paper presents a method for estimating the inertia tensor components of a spacecraft that has expired its active life using measurement data of the Earth’s magnetic field induction vector components. The implementation of this estimation method is supposed to be carried out when cleaning up space debris in the form of a clapped-out spacecraft with the help of a space tug. It is assumed that a three-component magnetometer and a transmitting device are attached on space debris. The parameters for the rotational motion of space debris are estimated using this measuring system. Then, the known controlled action from the space tug is transferred to the space debris. Next, measurements for the rotational motion parameters are carried out once again. Based on the available measurement data and parameters of the controlled action, the space debris inertia tensor components are estimated. It is assumed that the measurements of the Earth’s magnetic field induction vector components are made in a coordinate system whose axes are parallel to the corresponding axes of the main body axis system. Such an estimation makes it possible to effectively solve the problem of cleaning up space debris by calculating the costs of the space tug working body and the parameters of the space debris removal orbit. Examples of numerical simulation using the measurement data of the Earth’s magnetic field induction vector components on the Aist-2D small spacecraft are given. Thus, the purpose of this work is to evaluate the components of the space debris inertia tensor through measurements of the Earth’s magnetic field taken using magnetometer sensors. The results of the work can be used in the development and implementation of missions to clean up space debris in the form of clapped-out spacecraft.
Read full abstract