This paper addresses the problem of finding the optimal position and sizing of battery energy storage (BES) devices using a two-stage optimization technique. The primary stage uses mixed integer linear programming (MILP) to find the optimal positions along with their sizes. In the secondary stage, a relatively new algorithm called mountain gazelle optimizer (MGO) is implemented to find the technical feasibility of the solution, such as voltage regulation, energy loss reduction, etc., provided by the primary stage. The main objective of the proposed bi-level optimization technique is to improve the voltage profile and minimize the power loss. During the daily operation of the distribution grid, the charging and discharging behaviour is controlled by minimizing the voltage at each bus. The energy storage dispatch curve along with the locations and sizes are given as inputs to MGO to improve the voltage profile and reduce the line loss. Simulations are carried out in the MATLAB programming environment using an Australian radial distribution feeder, with results showing a reduction in system losses by 8.473%, which outperforms Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and Cuckoo Search Algorithm (CSA) by 1.059%, 1.144%, and 1.056%, respectively. During the peak solar generation period, MGO manages to contain the voltages within the upper boundary, effectively reducing reverse power flow and enhancing voltage regulation. The voltage profile is also improved, with MGO achieving a 0.348% improvement in voltage during peak load periods, compared to improvements of 0.221%, 0.105%, and 0.253% by GWO, WOA, and CSA, respectively. Furthermore, MGO’s optimization achieves a reduction in the fitness value to 47.260 after 47 iterations, demonstrating faster and more consistent convergence compared to GWO (47.302 after 60 iterations), WOA (47.322 after 20 iterations), and CSA (47.352 after 79 iterations). This comparative analysis highlights the effectiveness of the proposed two-stage optimization approach in enhancing voltage stability, reducing power loss, and ensuring better performance over existing methods.
Read full abstract