ABSTRACTWe consider an infinite-buffer single server queue with batch Markovian arrival process (BMAP) and exhaustive service discipline under multiple working vacation policy. The service time during a working vacation is generally distributed random variable which is independent of the service times during a normal busy period as well as the arrival process. Duration of service times during a normal busy period and duration of working vacation times follow the class of distributions whose Laplace-Stieltjes transforms are rational functions (R-type distributions). The service time during a normal busy period, working vacation time, and the service time during a working vacation are independent of each other as well as of the arrival process. If a working vacation terminates while service is going on for a customer at head of the queue in vacation mode then, the server switches to normal mode and the customer at head of the queue is entitled to receive a full service time in the normal busy period irrespective of the amount of service received by the customer at head of the queue during the previous working vacation period. We obtain system-length distributions at various epoch, such as post-departure, pre-arrival, arbitrary, and pre-service. The proposed analysis is based on the use of matrix-analytic procedure to obtain system-length distribution at post-departure epoch. Later, we use supplementary variable technique and simple algebraic manipulations to obtain system-length distribution at arbitrary epoch using the system-length distribution at post-departure epoch. Some important performance measures, such as mean system lengths and mean waiting time have been obtained. Finally, some numerical results have been presented in the form of tables and graphs to show the applicability of the results obtained in this article. The model has potential application in areas of computer and communication networks, such as ethernet passive optical network (EPON).