Abstract

This paper presents modelling and analysis of a discrete-time GIX/Geom/1/K queueing system (where K is the capacity of the system) with N threshold policy for the early arrival system (EAS). The server is turned off when the system is vacant and checks the queue length every time for an arrival of a batch. As soon as the queue length reaches a pre-specified value N(1 ≤ N ≤ K), the server turns on and serves continuously until the system becomes vacant. We obtain the steady state system length distributions at pre-arrival, arbitrary and outside observer's epochs using the combination of the supplementary and the imbedded markov chain techniques. Various performance characteristics like average number of users in the queue/system, blocking probabilities of users (first-, an arbitrary- and last-user of an arriving batch) and average waiting time are obtained analytically with numerical analysis. The numerical analysis data are presented in graphical format for blocking probabilities under different buffer size values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call