Wireless sensor networks (WSNs) allocate thousands of cheap micro-sensor nodes to a hundreds to more than thousands of nodes in the reserved areas. In the WSN, sensor nodes control storage resources, calculating energy of nodes, power resources of nodes, and additional resources information on a sensor network. These micro-sensor nodes are key components of the Internet of Things (). WSNs are pre-arranged in clusters or groups to protect the ability for efficient data communication. Strong routing methods are required to maintain long network life and achieve high power usage. In this work, the new energy efficient ANFIS-based routing system for WSN enabled to improve network performance. The proposed ANFIS-based routing involves a novel distributed clustering mechanism that activates the local configuration of local node energy equally across all sensors. A new technique for replacing clusters and rotating nodes with a centroid-based cluster head (CH) to distribute loads. The simulation results show that the proposed program will surpass conventional methods with 78% improvement over the lifetime of the network and 26% improvement in performance.
Read full abstract