One of the grand challenges in chemical biology is identifying a small-molecule modulator for all proteins within a proteome. To expand the variety and number of ligandable proteins for drug discovery, the objective of this study was to synthesize and evaluate the protein target profiles of electrophilic and photoreactive fully functionalized small-molecule probes (FFSMPs) featuring increased scaffold-, appendage-, and protein-reactive functional group (PRFG) diversity. FFSMPs contain: (1) a protein-binding motif, (2) an electrophilic or photoreactive PRFG for target protein capture, and (3) a terminal alkyne for click chemistry-based proteomic applications. These compounds can be directly applied in phenotypic screening programs to identify ligand-protein pairs in cells unbiasedly. Herein, we highlight 17 examples from 34 structurally diverse FFSMPs featuring five electrophiles, three photoreactive groups, and 15 chemical scaffolds. Essential to the synthesis of the FFSMPs was a new minimalist bifunctional isocyanide in an "isocyanide-based multicomponent reaction-Boc deprotection-arming" synthetic sequence. To the best of our knowledge, this is the first report concerning the preparation of appendage- and scaffold-diverse FFSMPs for integrated phenotypic screening-target identification campaigns with the ability to examine either electrophilic or photoreactive PRFGs. In contrast, the status quo for such studies has been appendage-diverse FFSMPs comprised of a single chemical scaffold and a single PRFG, which limits efficient target protein capture and/or chemical space sampling significantly in the quest for discovering new drug targets and/or compounds with novel mechanisms of action. Phenotypic screening of the electrophilic members of our library identified several FFSMPs with potent antiproliferative activity against MCF10CA1a breast cancer cells. One of these FFSMPs (Compound 4a) covalently targeted and potently inhibited protein disulfide isomerase A1 (PDIA1). This study supports the continued use of minimalist bifunctional isocyanides as valuable building blocks for preparing structurally diverse FFSMPs for integrated phenotypic screening-target identification campaigns.