Since ancient times, we have worked with microbial consortia in a variety of contexts, including wastewater treatment, the production of biogas, additionally to biodegradation and bio cleansing. The great ability of microbial consortiums is, however, a very long way from being completely realized. Last few years have seen a surge in interest in biosynthesis and bioprocessing related to the understanding and use of microbial consortia. It can be difficult to implement complex tasks in a single population. Synthetic consortiums of microorganisms have long utilized in biotechnology procedures like waste management, agricultural farming, and fermentation. Today, microbial consortiums are being engineered for a range of uses by synthetic biologists. The division of collaborative work in consortia is crucial for the breakdown of environmental contaminants that are persistent, cultures need to be resilient to the complicated environment, which often needs several phases. As a result, bioremediation may greatly benefit from the use of synthetic microbial consortiums [1]. The created and improved synthetic microbial community can operate as a culture (seed culture) for ex situ remediation methods including biodegradation in smaller reactors and bio augmentation of in situ bioremediation practices. In order to prevent genetic contamination from environmental microorganisms, the use of designed microbial consortia is currently, to a large degree, restricted in carefully monitored bioprocesses. In this review, an overview of undefined naturally occurring microbial consortia and their application was discussed. We introduced the notion of synthetic microbial consortia, system biology, we discussed Importance of synthetic microbial consortia with relevant examples of how they add value to bio refineries. We did an overview of microbial consortia in biotechnological process, application of microbial consortia in bioremediation and biodegradation was further discussed.