Groundwater serves as a crucial resource, with its quality significantly impacted by both natural and human-induced factors. In the highly industrialized and urbanized Yangtze River Delta region, the sources of pollutants in shallow groundwater are more complex, making the identification of groundwater pollution sources a challenging task. In this study, 117 wells in Wujiang District of Suzhou City were sampled, and 16 groundwater quality parameters were analyzed. The fuzzy synthetic evaluation method was used to assess the current status of groundwater pollution in the study area; the principal component analysis (PCA) was employed to discern the anthropogenic and natural variables that influence the quality of shallow groundwater; and the absolute principal component scores–multiple linear regression (APCS-MLR) model was applied to quantify the contributions of various origins toward the selected groundwater quality parameters. The results indicate that the main exceeding indicators of groundwater in Wujiang District are I (28%), NH4-N (18%), and Mn (14%); overall, the groundwater quality is relatively good in the region, with localized heavy pollution: class IV and class V water are mainly concentrated in the southwest of Lili Town, the north of Songling Town, and the south of Qidu Town. Through PCA, five factors contributing to the hydrochemical characteristics of groundwater in Wujiang District were identified: water–rock interaction, surface water–groundwater interaction, sewage discharge from the textile industry, urban domestic sewage discharge, and agricultural non-point source pollution. Additionally, the APCS-MLR model determined that the contributions of the three main pollution sources to groundwater contamination are in the following order: sewage discharge from the textile industry (10.63%) > urban domestic sewage discharge (8.69%) > agricultural non-point source pollution (6.26%).
Read full abstract