Synthetic aperture radar (SAR) interferometry uses the phase difference between two SAR antennas to obtain an elevation estimate of the imaged terrain. Using an initial digital elevation model (DEM), the time-domain backprojection algorithm implicitly removes the terrain height phase from images during image formation. The use of a DEM during image formation adds additional information to the process of interferometry, resulting in different sensitivities to conventional interferometry. This article presents a novel method of SAR interferometry using backprojected imagery. It is shown that the sensitivity and performance of backprojection interferometry is significantly different to that of conventional methods. Specifically, it is shown that backprojection interferometry is much less sensitive to errors in measurement of the interferometric baseline length and angle. This comes at the expense of higher sensitivity to phase errors. We conclude that backprojection interferometry is best suited for airborne operation.