Synthetic aperture radar tomography (TomoSAR) is an extension of synthetic aperture radar (SAR) imaging. It introduces the synthetic aperture principle into the elevation direction to achieve three-dimensional (3-D) reconstruction of the observed target. Compressive sensing (CS) is a favorable technology for sparse elevation recovery. However, for the non-sparse elevation distribution of the forested areas, if CS is selected to reconstruct it, it is necessary to utilize some orthogonal bases to first represent the elevation reflectivity sparsely. The iterative adaptive approach (IAA) is a non-parametric algorithm that enables super-resolution reconstruction with minimal snapshots, eliminates the need for hyperparameter optimization, and requires fewer iterations. This paper introduces IAA to tomographicinversion of the forested areas and proposes a novel multi-polarimetric-channel joint 3-D imaging method. The proposed method relies on the characteristics of the consistent support of the elevation distribution of different polarimetric channels and uses the L2-norm to constrain the IAA-based 3-D reconstruction of each polarimetric channel. Compared with typical spectral estimation (SE)-based algorithms, the proposed method suppresses the elevation sidelobes and ambiguity and, hence, improves the quality of the recovered 3-D image. Compared with the wavelet-based CS algorithm, it reduces computational cost and avoids the influence of orthogonal basis selection. In addition, in comparison to the IAA, it demonstrates greater accuracy in identifying the support of the elevation distribution in forested areas. Experimental results based on BioSAR 2008 data are used to validate the proposed method.
Read full abstract