In this study, Polyphenols functionalized Graphitic Hematite Nanocomposite (PGHN) was used as an adsorbent to remove Caesium (Cs) ions from a simulated solution. The nanocomposite was produced by synthesizing iron oxide nanoparticles using orange peel extract (OPE) as the reducing and capping agent in the presence of graphite produced from sugarcane bagasse. The nanocomposite exhibited a scaly morphology and the mean particle size of rhombohedral structured hematite nanoparticles was found to be 148.9 nm. The simulated solution of Cs ions was treated with PGHN and the treatment conditions were optimized by batch method. The concentration of Cs ion in the treated solution was determined using atomic emission spectroscopy (AES). The maximum Cs adsorption of 97.95% was attained at an optimum condition of pH – 9.0 and adsorbent dose – 70 mg/mL for treatment period of 110 min. The experimental data of adsorption fitted well with pseudo 1st order kinetics and was favorable for both Langmuir and Freundlich isotherm models. The study reports a facile method for the production of nanocomposite using agro-wastes such as sugarcane bagasse and orange peels. The synthesized nanocomposite was used as an adsorbent for the removal of toxic Cs and can be further used for industrial wastewater treatment.
Read full abstract