Many optical sensors exploit the interesting properties of porous materials, as they ensure a stronger interaction between the light and the analyte directly within the optical structure. Most porous optical sensors are mainly based on porous silicon and anodized aluminum oxide, showing high sensitivities. However, the top-down strategies usually employed to produce those materials might offer a limited control over the properties of the porous layer, which could affect the homogeneity, reducing the sensor reproducibility. In this work, we present the bottom-up synthesis of mesoporous TiO2 Fabry-Pérot optical sensors displaying high sensitivity, high homogeneity, and low production cost, making this platform a very promising candidate for the development of high-performance optical sensors.