Cyanobacterium sp. IPPAS B-1200 is a cyanobacteria strain that belongs to the rare genus Cyanobacterium, family Cyanobacteriaceae fam. nov. Studies devoted to the isolation of secondary metabolites from this strain concentrate mostly on the fatty acid composition while the issue of isolating and identifying exopolysaccharides remains understudied. However, polysaccharides from cyanobacteria are of scientific and economic interest in the framework of biotechnology, medicine, pharmacology, etc. The research objective was to study the effect of the physicochemical conditions of cultivation and the composition of the cultural medium on exopolysaccharide production.
 Cyanobacterium sp. B-1200 were grown under 7500 ± 50 lux (12 h light/12 h dark). The dry cell weight was determined by gravimetry and a calibration plot that illustrated the dependence of the biomass amount on the degree of absorption at a wavelength of 750 nm. The amount of polysaccharides in the culture liquid was assessed by the Anthrone-sulphate method. The extraction was carried out by alcohol precipitation. The method of ultrasonic dispersion was used to destroy the cell walls of cyanobacteria. 
 The experimental study revealed the optimal parameters for the extraction and purification of exopolysaccharides from the culture medium. Removal of sodium bicarbonate from the medium and a 300%-increase in its concentration raised the yield of polysaccharides. The optimal value of active acidity for the synthesis of polysaccharides was pH = 6 while the optimal temperature for their accumulation was 35°C. The largest amount of biomass was obtained at 25°C. Intense white illumination contributed to the greatest release of exopolysaccharides into the culture medium; red-white illumination affected the morphology of cyanobacteria cells. During the extraction, the concentration, temperature, and nature of the extractant proved to be the most important factors. For example, isopropanol produced the highest yield while butanol triggered the least effective response. 
 The optimal extraction and purification modes for polysaccharides were as follows. For ultrasonic processing, the best results were obtained at a power of 20 W after 5 min. For freeze drying, the rational parameters were 8 h at –15°C.
Read full abstract