During photosynthesis, plants fix CO2 from the atmosphere onto ribulose-bisphosphate, producing 3-phosphoglycerate, which is reduced to triose phosphates (TPs). The TPs are then converted into the end products of photosynthesis. When a plant is photosynthesizing very quickly, it may not be possible to commit photosynthate to end products as fast as it is produced, causing a decrease in available phosphate and limiting the rate of photosynthesis to the rate of triose phosphate utilization (TPU). The occurrence of an observable TPU limitation is highly variable based on species and especially growth conditions, with TPU capacity seemingly regulated to be in slight excess of typical photosynthetic rates the plant might experience. The physiological effects of TPU limitation are discussed with an emphasis on interactions between the Calvin-Benson cycle and the light reactions. Methods for detecting TPU-limited data from gas exchange data are detailed and the impact on modeling of some physiological effects are shown. Special consideration is given to common misconceptions about TPU.