The mitigation of environmental impacts caused by greenhouse gas emissions has become increasingly urgent, and the use of CO2 as a primary carbon source is an alternative in chemical transformations, including the synthesis of organic carbonates, formic acid, or methanol. This work aims to synthesize ionic liquids from the imidazolium cation family to be used in the cycloaddition of CO2 with ILs anchored in SiO2-clay heterostructure, MCM-41 and KIT-6 mesoporous materials, as well as the hydrogenation of CO2 with ILs added to ruthenium complexes, i.e., two catalytic systems. The most satisfactory result for CO2 cycloaddition (TON PC = 226) was obtained using the IL (MeO)3Sipmim.Cl anchored in SiO2-clay heterostructure (0.16 mol%) as the catalyst and ZnBr2 (0.04 mol%) as the co-catalyst. The hydrogenation was conducted with the IL (edaO)3Sipmim.Cl and the ruthenium complex Ru-PNN were not successful, but with co-catalyst PEHA, formic acid/formamide was produced (TON Form = 552). The unique catalytic system that showed activity for forming methanol was the commercial Ru-MACHO, Ru-C29H30ClNOP2, (TON MeOH = 3.3). These results highlight the potential of ruthenium-based complexes and supported ionic liquids as active systems in CO2 conversion.
Read full abstract