Using three different amino acids (AAs) as organic matrices, including the highly nonpolar hydrophobic l-valine, the positively charged l-arginine and the less polar uncharged l-serine, calcium carbonate (CaCO3) with different morphologies and polymorphs were synthesized by a facile gas diffusion reaction based on biomimetic strategy. Compared with the control cubic calcite obtained in the absence of AAs, the product from l-valine was cubic calcite aggregates assembled by nano-platelets. The product from l-arginine was spherical vaterite aggregates assembled by spherical nanoparticles. The product from l-serine was the mixture of cubic calcite and spherical vaterite. The structures and properties of the side chains of the AAs exerted the significant effects on the nucleation and growth of the CaCO3. The formation mechanisms of the CaCO3 in the presence of AAs are preliminarily discussed. The results suggest that the polymorphs and morphologies of the inorganic nanomaterials might be easily adjusted through the careful selection of the organic matrices.
Read full abstract