The development of atom-economical and efficient processes for obtaining a variety of chemical products using CO<sub>2</sub> as C<sub>1</sub>-synthon plays an increasingly important role in modern scientific and technological research. Due to the inertness of CO2 many extremely attractive routes to valuable chemical products turn out to be impossible to implement, particularly for thermodynamic reasons, leaving one only dreaming about them as something unattainable. This review demonstrates how the catalytic coupling of ethylene and CO<sub>2</sub> into acrylic acid, once considered a "dream reaction" has not only become a reality, but has also evolved into the category of technological processes. The key stages of the long-term development of this unique reaction from the discovery of metal activation of CO<sub>2</sub> and stoichiometric preparation of metallalactones to catalytic synthesis using a variety of metal-catalysts (Ni, Pd, Ru, Rh) showcase the ingenuity and skill of researchers as well as an example of consistent development in this field of chemistry. We believe that this remarkably successful example will inspire scientists to tackle any "impossible" problems.<br> The bibliography includes 117 references.
Read full abstract