Abstract

Direct conversion of methanol and acetic acid (HAc) into acrylic acid (AA) and methyl acrylate (MA) is remarkably significant for the high-value utilization of coal-based chemicals. However, the previous catalysts, due to their single function or poor synergy between multiple active sites, remain large challenges in direct synthesis of acrylic acid. Herein, we designed a novel catalyst system through coating TiO2 to sodium superionic conductor (NASICON) substrate for direct synthesis of acrylic acid from methanol and acetic acid. It was revealed that the catalyst with TiO2 coating showed obviously improved performance. The selectivity of AA+MA highly reached 56.1 % at 380 °C, corresponding to the spatiotemporal yield of 46.5 μmol·g−1·min−1. It was demonstrated that TiO2 coating catalyzes the oxidative dehydrogenation of methanol to formaldehyde, while NASICON substrate exerts important effects on the aldol condensation of formaldehyde and acetic acid, and their effective synergy promotes the direct synthesis of acrylic acid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.