In the present experiment, we evaluated the impact of thymoquinone (TQ) and paclitaxel (PTX) treatment on MDA-MB-231 cell line growth inhibition via controlling apoptosis/autophagy. MDA-MB-231cells were exposed to PTX (0, 25, 50, 75, and 100 nM), TQ (0, 25, 50, 75, and 100 µM), and combinations for 48h. After the MTT assessment, dose-response curves and IC50 values were calculated, and the combination synergism was evaluated using the Compusyn software. Following the treatment with PTX, TQ, and combinations at IC50 doses, the expression of apoptosis and autophagy genes was assessed in cells. The GraphPad Prism program was used to analyze the data, and Tukey's test at p < 0.05 was then run. PTX, TQ, and their combinations inhibited MDA-MB-231cell proliferation and viability dose-dependently. TQ reduced the effective concentration (IC50) of PTX in co-treatment groups. PTX and TQ showed antagonistic effects when cell proliferation declined above 70%. Antagonistic effects shifted into additive and synergistic effects upon increasing PTX concentration, indicated by diminished cell proliferation below 70%. PTX-TQ co-treatment significantly enhanced P53 and BAX expression while reducing Bcl-2 expression. Also, their combination increased Beclin-1, ATG-5, and ATG-7 expression in treated cells. Effective concentrations of TQ and PTX had synergic effects and inhibited breast cancer cells via prompting apoptosis and autophagy in vitro.
Read full abstract