Abstract

This study was undertaken to investigate the effect of paclitaxel and bevacizumab on the therapeutic efficacy of (90)Y-labeled B3 monoclonal antibody, directed against Le(y) antigen, for the treatment of Le(y)-positive A431 tumors implanted subcutaneously in the right hind flank of nude mice. When the tumor size reached ~200 mm(3), the mice received a single dose of intravenous (iv) (90)Y-labeled B3 (60 μCi/150 μg or 100 μCi/150 μg B3), intraperitoneal paclitaxel (40 mg/kg) or iv bevacizumab (5 mg/kg) for monotherapy. To investigate the effect of combined therapies on survival, the mice were treated with two or three agents in the following combinations: (90)Y-B3 on day 0 and paclitaxel on day 1; bevacizumab on -1 day and (90)Y-B3 on day 0; bevacizumab on -1 day and paclitaxel on day 1; bevacizumab, (90)Y-B3 and paclitaxel each at 1-day intervals. The mice with no treatment were used as a control. The tumor volume at 1000 mm(3) was used as a surrogate end point of survival. Compared to control animals, paclitaxel delayed tumor growth with a significantly longer median survival time (P<.001), whereas bevacizumab alone showed a less pronounced effect on a median survival time (P=.18). (90)Y-B3 increased the median survival time in a dose-dependent manner (P<.05). The combined therapy of bevacizumab with paclitaxel produced a trend toward an increase of the median survival time compared to paclitaxel alone (P=.06), whereas bevacizumab combined with (90)Y-B3 showed a statistically insignificant increase in the median survival time compared to (90)Y-B3 alone (P=.25). The tumor sizes of all animals in these groups reached the surrogate end point of survival by day 35. In contrast, the combined therapy involving (90)Y-B3 with paclitaxel showed a striking synergistic effect in shrinking tumors and prolonging the survival time (P<.001); on day 120, three of nine mice (33%) and six of six mice (100%) were alive without tumor when treated with 60 μCi (90)Y-B3 and 100 μCi (90)Y-B3, respectively. The addition of bevacizumab treatment 1 day before the combined therapy of 60 μCi (90)Y-B3 with paclitaxel did not produce a statistically significant increase in survival when compared to the (90)Y-B3 with paclitaxel (P>.10). Fluorescence microscopy analysis indicated that paclitaxel increased, whereas bevacizumab decreased, the accumulation and penetration of Alexa Fluor 647-B3 into tumor microenvironment compared to the control (P<.05). Our findings on the paclitaxel effect support a hypothesis that the increased tumor accumulation and penetration of (90)Y-B3 as well as the high radiosensitization of tumor cells by paclitaxel may be the major factors responsible for the synergistic effect of the combined therapy involving (90)Y-B3 with paclitaxel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.