The crystal structures of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 (PMN) have been investigated using synchrotron radiation X-ray powder diffraction. Two different types of cubic components coexist in the paraelectric phase at 600 K. The first is Cubic-I, in which the Pb ion is isotropically off-centered from the corner of the perovskite-type unit cell. The other, Cubic-II, has the Pb ion preferentially off-centered in the <111> directions from the corner. The volume fractions of Cubic-I and Cubic-II are approximately 83% and 17%, respectively. Previous studies have shown that only approximately 20% of PMN transitions to a rhombohedral structure at 100 K. This observation suggests a close relationship between Cubic-II and the rhombohedral structure at low temperatures. The intrinsic structural inhomogeneity observed in the paraelectric phase, such as variations in the disordering behavior of Pb ions, is potentially linked to the relaxor characteristics of PMN.