The linear polarization of synchrotron radiation (SR) in the orbital plane leads to a background reduction in total reflection X-ray fluorescence (TXRF) analysis if a side-looking detector is used. The optimum orientation of the sample carrier in a SR-TXRF experiment, however, is determined by a trade-off between the exploitation of the linear polarization, the efficiency of excitation and the solid angle of detection and depends on the nature and size of the sample. SR-TXRF measurements on different sample types and using different reflector orientations have been carried out at the Hamburger Synchrotronstrahlungslabor bending magnet beamline L. A NIST standard water sample, a steel sample and an oil standard were analyzed with both a horizontal and a vertical sample carrier orientation. Strongly scattering samples led to lower detection limits with a horizontal reflector whereas weakly scattering samples showed lower detection limits with a vertical reflector configuration. On an intentionally contaminated wafer absolute detection limits of 6.6 fg for Ni could be extrapolated.
Read full abstract