Understanding the fate of subducted carbonates is a prerequisite for the elucidation of the Earth’s deep carbon cycle. Here we show that the concomitant presence of Ca[CO3] with CO2 in a subducting slab very likely results in the formation of an anhydrous mixed pyrocarbonate, Ca3C2O52CO3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{{{\\rm{Ca}}}}}_{3}{\\left[{{{{\\rm{C}}}}}_{2}{{{{\\rm{O}}}}}_{5}\\right]}_{2}\\left[{{{{\\rm{CO}}}}}_{3}\\right]$$\\end{document}, at moderate pressure ( ≈ 20 GPa) and temperature ( ≈ 1500 K) conditions. We show that at these conditions Ca3C2O52CO3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{{{\\rm{Ca}}}}}_{3}{\\left[{{{{\\rm{C}}}}}_{2}{{{{\\rm{O}}}}}_{5}\\right]}_{2}\\left[{{{{\\rm{CO}}}}}_{3}\\right]$$\\end{document} can be obtained by reacting Ca[CO3] with CO2 in a laser-heated diamond anvil cell. The crystal structure was obtained from synchrotron-based single crystal X-ray diffraction data. Density Functional Perturbation Theory calculations in combination with experimental Raman spectroscopy results unambiguously confirmed the structural model. The crystal structure of Ca3C2O52CO3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{{{\\rm{Ca}}}}}_{3}{\\left[{{{{\\rm{C}}}}}_{2}{{{{\\rm{O}}}}}_{5}\\right]}_{2}\\left[{{{{\\rm{CO}}}}}_{3}\\right]$$\\end{document} is characterized by the presence of CO32−\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\left[{{{{\\rm{CO}}}}}_{3}\\right]}^{2-}$$\\end{document}- and C2O52−\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\left[{{{{\\rm{C}}}}}_{2}{{{{\\rm{O}}}}}_{5}\\right]}^{2-}$$\\end{document}-groups. The results presented here imply that the formation of Ca3C2O52CO3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{{{\\rm{Ca}}}}}_{3}{\\left[{{{{\\rm{C}}}}}_{2}{{{{\\rm{O}}}}}_{5}\\right]}_{2}\\left[{{{{\\rm{CO}}}}}_{3}\\right]$$\\end{document} needs to be taken into account when constructing models of the deep carbon cycle of the Earth.
Read full abstract