Abstract
Abstract Dislocation structures are abundantly present in any additively manufactured alloy and they play a primary role in determining the mechanical response of an alloy. Until recently, it was understood that these structures form due to rapid solidification during AM. However, there was no consensus on whether they evolve due to the subsequent solid-state thermal cycling that occurs with further addition of layers. In order to design alloy microstructures with desired mechanical responses, it is crucial to first answer this outstanding question. This question was answered in a recent work [1] involving a novel experiment employing high resolution reciprocal space mapping, a synchrotron based X-ray diffraction technique, in situ during AM of an austenitic stainless steel. The study revealed that dislocation structures formed during rapid solidification undergo significant evolution during subsequent solid-state thermal cycling, in particular during addition of the first few (up to 5) layers above the layer of interest. A summary of the findings of this study are presented in this work. A possible pathway (involving experiment and modelling synergy) to better understanding dislocation structure formation during AM is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.