Previous studies show that chronic stress induces synaptic structural alterations in brain regions involved in emotional processing such as the prefrontal cortex (PFC) and the basolateral amygdala (BLA). Yet, these studies are based mainly in animal exposure to unpredictable stressors or to restraint stress. On the other hand, studies using the chronic social defeat stress (CSDS), a relevant model of depression based on social conflict, are lacking. Here we aim to study the acute (24 h after CSDS) and long-term (one month after CSDS) effects of CSDS on dendritic and synaptic structures in the PFC and BLA of C57BL/6 mice. Specifically, BLA and PFC dendritic spine densities as well as BLA arborisation were analysed. Subsequently, we investigate in these regions the synaptic response to a friendly (interaction with a same strain mouse) or a fearful (interaction with a dominant strain mouse) social stimulus.Spine densities of the apical dendrites from the PFC pyramidal neurons were decreased by CSDS in the long-term (one month after CSDS). In addition, CSDS increased BLA stellate neurons spine density in the short-term (24 h after CSDS) and dendritic arborisation in the long-term. Moreover, long-term CSDS mice exposed to a fearful stimulus experienced a marked social avoidance and showed a significant increase in the expression of the immature form of the brain derived neurotrophic factor (proBDNF) in the amygdala.Taken together these results suggest the existence of persistent neuronal adaptations in the PFC and BLA in socially defeated mice. Specifically, spine density retraction in the PFC and increased BLA dendritic arborisation could represent an adaptive structural change allowing rapid expression of synaptic markers in response to fearful experiences.