Astrocytes perform multifarious roles in the formation, regulation, and function of synapses in the brain, but the mechanisms involved are incompletely understood. Interestingly, astrocytes abundantly express neuroligins, postsynaptic adhesion molecules that function as synaptic organizers by binding to presynaptic neurexins. Here we examined the function of neuroligins in astrocytes with a rigorous genetic approach that uses the conditional deletion of all major neuroligins ( Nlgn1-3 ) in astrocytes in vivo and complemented this approach by a genetic deletion of neuroligins in glia cells that are co-cultured with human neurons. Our results show that early postnatal deletion of neuroligins from astrocytes in vivo has no detectable effect on cortical or hippocampal synapses and does not alter the cytoarchitecture of astrocytes when evaluated in young adult mice. Moreover, deletion of astrocytic neuroligins in co-cultures of human neurons produced no detectable consequences for the formation and function of synapses. Thus, astrocytic neuroligins are unlikely to fundamentally shape synapse formation or astrocyte morphogenesis but likely perform other important roles that remain to be discovered.
Read full abstract