We construct a Hecke correspondence for a moduli space of symplectic vector bundles over a curve. As an application we prove the following. Let X be a complex smooth projective curve of genus g(X) > 2 and L a line bundle over X. Let [Formula: see text] be the moduli space parametrizing stable pairs of the form (E,φ), where E is a vector bundle of rank 2n over X and φ : E ⊗ E → L a skew-symmetric nondegenerate bilinear form on the fibers of E. If deg (E) ≥ 4n(g(X)-1), then there is a projectivized Picard bundle on [Formula: see text], which is a projective bundle whose fiber over any point [Formula: see text] is ℙ(H0(X,E)). We prove that this projective bundle is stable.
Read full abstract