Sympathetic nerve sprouting in healed myocardial infarction (MI) has been associated with high incidences of lethal arrhythmias, but the underlying mechanisms are largely unknown. This study sought to test that sympathetic hyperinnervation and/or MI remodels the myocardial glutamate signaling and ultimately increases the severity of ventricular tachyarrhythmias. Myocardial necrotic injury (MNI) was created by liquid nitrogen freeze-thawing across an intact diaphragm to mimic MI. Cardiac sympathetic hyperinnervation was induced by chronic subcutaneous injection of 4-methylcatechol, a potent stimulator of nerve growth factor expression. The results showed that sympathetic hyperinnervation with or without MNI upregulated the myocardial expression of ionotropic glutamate receptors (iGluRs), including NMDA receptor (NMDAR) and AMPA receptor (AMPAR), and induced cardiomyocyte apoptosis. Intravenous infusion with either NMDA (12 mg/kg) or AMPA (15 mg/kg) triggered ventricular tachycardia and ventricular fibrillation in rats with healed MNI plus sympathetic hyperinnervation; these arrhythmias were prevented by respective antagonist of NMDAR or AMPAR. We conclude that MNI with sympathetic nerve sprouting upregulates the expression of NMDAR and AMPAR in the myocardium and this impact in turn enhances cardiac responses to stimulations of iGluRs and thus increases the incidence of ventricular tachyarrhythmias.
Read full abstract