Mersenne prime numbers, expressed in the form (2n − 1), have long captivated researchers due to their unique properties. The presented work aims to develop a symmetric cryptographic algorithm using a novel technique based on the logical properties of Mersenne primes. Existing encryption algorithms exhibit certain challenges, such as scalability and design complexity. The proposed novel modular multiplicative inverse property over Mersenne primes simplifies the encryption/decryption process. The simplification is achieved by computing the multiplicative inverse using cyclic bit shift operation. The proposed image encryption/decryption scheme involves a series of exor, complement, bit shift, and modular multiplicative inversion operations. The image is segmented into blocks of 521 bits. Each of these blocks is encrypted using a 521-bit key, ensuring high entropy and low predictability. The inclusion of cyclic bit shifting and XOR operations in the encryption/decryption process enhances the diffusion properties and resistance against attacks. This approach was experimentally proven to secure the image data while preserving the image structure. The experimental results demonstrate significant improvements in security metrics, including key sensitivity and correlation coefficients, confirming the technique’s effectiveness against cryptographic attacks. Overall, this method offers a scalable and secure solution for encrypting high-resolution digital images without compromising computational efficiency.
Read full abstract