Although solid polymer electrolytes have been developed for several decades, poly(ethylene oxide) (PEO) or polymers with ethoxy (EO) segments are still one of the most promising candidates for advanced batteries. The low ionic conductivity and lithium-iontransference number as well as the deterioration of mechanical properties after coupling with lithium salts restrict its further adoption. Herein, a serial of PEO-based composite electrolytes optimized by waterborne polyurethane are prepared via blend method. With the assistance of H2O, ionic type waterborne polyurethane assembles into flexible micelles, in which hydrophobic segments as the core and hydrophilic groups as the shell. Utilizing this feature of waterborne polyurethane, PEO and Li salt (LiTFSI) aqueous solution is slowly added to the organic solution of waterborne polyurethane to compoundin situ, and polymer composite electrolytes are fabricated. The multilevel (hydrogen bonds with different binding energy) and multiscale (deformation of flexible micelles) dynamic interaction endows the composite electrolyte with attractive mechanical properties. The assembled Li|Li symmetric battery with the molar ratio of EO to Li salts of 8:1 exhibits excellent cycling stability up to 800 h at 0.1 mA cm-2, and the assembled Li|LiFePO4battery can be stably cycled at 1C for >400 cycles.
Read full abstract