Nanoscale slab slot waveguides provide for high optical confinement and have found abundant applications in silicon photonics. After developing an analytical mode solver for general asymmetric slot waveguides, the confinement performance of symmetric as well as asymmetric geometries was systematically analyzed and compared. For symmetric structures, 2D confinement optimization by varying both low-index slot and high-index slab width revealed a detailed saturation trend of the confinement factor with the increase of the studied width. Furthermore, simple design rules on how to choose the slot and slab width for achieving optimal confinement was obtained. For asymmetric structures, we demonstrated that the confinement performance was always lower than the 2D optimized confinement of the symmetric structures providing the two high-index slab layers and the two cladding layers have same refractive indices, respectively. In addition, the sensitivity of the confinement to the degree of asymmetry was studied, and we found that the fabrication tolerance on the material and structural parameters may be reasonably large for symmetric structures designed at optimal confinement.
Read full abstract