Freeform optics are defined as nonrotational symmetric optical surfaces in the manufacturing industry. Freeform optics are extensively applied to many areas in order to improve system performance. Fast tool servo (FTS) assisting single-point diamond turning technology has high application prospects in freeform optics machining. This paper discusses the interpolation algorithm for tool path generation of FTS through the application of a radial basis function (RBF) algorithm. For this purpose, a positive definite RBF with compact support was employed as the interpolant. The existence is mathematically proven. Numerical simulations were performed to compare the performances of the RBF algorithm and commonly used algorithms for satisfying the requirements of existence, smoothness, and accuracy. Machining experiments were also conducted to validate the applicability of the algorithm. The simulation results showed that the RBF interpolation algorithm outperformed other algorithms in terms of smoothness. The RBF algorithm also provided the highest interpolation accuracy. Furthermore, the RBF interpolation algorithm exhibited the highest accuracy for error distribution, with large errors distributed mainly in transition areas. The machining results were also in general agreement with the simulation results although obvious practical errors were observed. Overall, RBF interpolation can provide higher accuracy and better smoothness in the tool path generation of FTS.