The 2-micron plasmid residing within the host budding yeast Saccharomyces cerevisiae nucleus serves as a model system for understanding the mechanism of segregation and stable maintenance of circular endogenously present extrachromosomal DNA in eukaryotic cells. The plasmid is maintained at a high average copy number (40-60 copies per yeast cell) through generations despite there is no apparent benefit to the host. Notably, the segregation mechanism of 2-micron plasmid shares significant similarities with those of bacterial low-copy-number plasmids and episomal forms of viral genomes in mammalian cells. These similarities include formation of a complex where the plasmid- or viral encoded proteins bind to a plasmid- or viral genome-borne locus, respectively and interaction of the complex with the host proteins. These together form a partitioning system that ensures stable symmetric inheritance of both these genomes from mother to daughter cells. Recent studies with substantial evidence showed that the 2-micron plasmid, like episomes of viruses such as Epstein-Barr virus, relies on tethering itself to the host chromosomes in a non-random fashion for equal segregation. This review delves into the probable chromosome hitchhiking mechanisms of 2-micron plasmid during its segregation, highlighting the roles of specific plasmid-encoded proteins and their interactions with host proteins and the chromosomes. Understanding these mechanisms provides broader insights into the genetic stability and inheritance of extrachromosomal genetic elements across diverse biological systems.
Read full abstract