The main goal of this paper is to study some interesting identities for the multiple twisted ( p , q ) -L-function in a complex field. First, we construct new generating functions of the new Carlitz-type higher order twisted ( p , q ) -Euler numbers and polynomials. By applying the Mellin transformation to these generating functions, we obtain integral representations of the multiple twisted ( p , q ) -Euler zeta function and multiple twisted ( p , q ) -L-function, which interpolate the Carlitz-type higher order twisted ( p , q ) -Euler numbers and Carlitz-type higher order twisted ( p , q ) -Euler polynomials at non-positive integers, respectively. Second, we get some explicit formulas and properties, which are related to Carlitz-type higher order twisted ( p , q ) -Euler numbers and polynomials. Third, we give some new symmetric identities for the multiple twisted ( p , q ) -L-function. Furthermore, we also obtain symmetric identities for Carlitz-type higher order twisted ( p , q ) -Euler numbers and polynomials by using the symmetric property for the multiple twisted ( p , q ) -L-function.
Read full abstract