The impact of shallow tunnel construction on the surrounding environment is often considered as a symmetric half-plane problem with circular holes. In this research, the analytical solutions of the ground stresses and displacements of a shallow circular tunnel in an elastic half-plane under arbitrary distributed loads on ground surface were derived, based on the complex variable method. Then, an application was implemented to analyze the potential plastic zone induced by shallow tunneling adjacent to the ground surface structures. The verification of the results obtained from the proposed analytical prediction model was carried out using the numerical simulations. Additionally, the influences of different boundary condition (different magnitudes and ranges of arbitrary distributed loads and different symmetric boundary conditions of the tunnel perimeter) on the distribution characteristics of the potential plastic zones were analyzed. In general, the results showed that the larger the pile loads and the closer the relative position between the tunnel and distributed loads, the more distinct the coalesced trends of the potential plastic zones around the tunnel and the potential plastic zones around the distributed loads.
Read full abstract