High-efficiency non-doped deep-blue organic light-emitting diodes (OLEDs) meeting the standard of BT.2020 color gamut is desired but rarely reported. Herein, an asymmetric structural engineering based on crossed long-short axis (CLSA) strategy is developed to obtain three new deep-blue emitters (BICZ, PHDPYCZ, and PHPYCZ) with a hot-exciton characteristic. Compared to 2BuCz-CNCz featuring a symmetric single hole-transport framework, these asymmetric emitters with the introduction of different electron-transport units show the enhancement of photoluminescence efficiency and improvement of bipolar charge transport capacity. Further combined with high radiative exciton utilization efficiency and light outcoupling efficiency, the non-doped OLED based on PHPYCZ exhibits the best performance with an excellent current efficiency of 3.49%, a record-high maximum external quantum efficiency of 9.5%, and a CIE y coordinate of 0.049 approaching the BT.2020 blue point. The breakthrough obtained in this work can inspire the molecular design of deep-blue emitters for high-performance non-doped BT.2020 blue OLEDs.
Read full abstract