This paper investigates the generation of complex bursting patterns in the Duffing oscillator with time-delayed feedback. We present the bursting patterns, including symmetric fold–fold bursting and symmetric Hopf–Hopf bursting when periodic forcing changes slowly. We make an analysis of the system bifurcations and dynamics as a function of the delayed feedback and the periodic forcing. We calculate the conditions of fold bifurcation and Hopf bifurcation as well as its stability related to external forcing and delay. We also identify two regimes of bursting depending on the magnitude of the delay itself and the strength of time delayed coupling in the model. Our results show that the dynamics of bursters in delayed system are quite different from those in systems without any delay. In particular, delay can be used as a tuning parameter to modulate dynamics of bursting corresponding to the different type. Furthermore, we use transformed phase space analysis to explore the evolution details of the delayed bursting behavior. Also some numerical simulations are included to illustrate the validity of our study.