We study the diffraction of Gaussian pulses and beams within the framework of boundary diffraction wave theory. For the first time the boundary diffraction wave theory is applied to pulsed Gaussian beams, and it is shown that the diffracted field of a pulsed Gaussian beam on a circularly symmetric aperture can be evaluated by a single 1D integration along the diffracting aperture at every point of interest. We compare theoretical simulations to experimental measurements of ultrashort pulses diffracted off a circular aperture, an opaque disc, an annular aperture, and a system of four concentric annular apertures. Using the recently developed SEA TADPOLE measurement technique, we obtain micron spatial and femtosecond temporal resolutions in the spatio-temporal measurements of the diffracted fields.
Read full abstract