The Generalized Feistel Structure (GFS\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ exttt{GFS}$$\\end{document}) is one of the most widely used frameworks in symmetric cipher design. In FES 2010, Suzaki and Minematsu strengthened the cryptanalysis security of GFS\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ exttt{GFS}$$\\end{document} by searching for shuffles with the best diffusion property. In ASIACRYPT 2018, Shi et al. suggested a set of shuffles, which makes GFS\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ exttt{GFS}$$\\end{document} a better resistance against Demirci–Selcuk meet-in-the-middle cryptanalysis. Since these shuffles are different from the currently known good ones and also different from the shuffles used in TWINE\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ exttt{TWINE}$$\\end{document} and LBlock\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ exttt{LBlock}$$\\end{document}, our research focuses on a more comprehensive evaluation of GFS\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ exttt{GFS}$$\\end{document} with different shuffles, including diffusion property of shuffle, differential, linear, impossible differential, zero-correlation linear, integral and Demirci–Selcuk meet-in-the-middle cryptanalysis, to find the best one. Such evaluations entail significant time consumption. Thus, we utilize Mixed Integral Linear Programming models and introduce an evaluate-and-filter strategy to achieve it efficiently. Our results verify that the shuffles discovered by Suzaki and Minematsu and those used in TWINE\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ exttt{TWINE}$$\\end{document} and LBlock\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ exttt{LBlock}$$\\end{document} are the best so far. We also find that the cryptanalysis resistances of GFS\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ exttt{GFS}$$\\end{document} are not necessarily consistent. It is this finding that makes the necessity of our more comprehensive evaluation self-evident.