<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> We consider rotationally invariant (RI) trellis-coded modulations transmitted over channels affected by phase noise. To describe the main ideas of this paper, we first concentrate, as a case study, on the simplest RI scheme, namely the differentially encoded <emphasis emphasistype="italic">M</emphasis>-ary phase-shift keying signal. For this problem, we use the framework based on factor graphs and the sum–product algorithm to derive the exact maximum <emphasis emphasistype="italic">a posteriori</emphasis> symbol detection algorithm. By analyzing its properties, we demonstrate that it can be implemented by a forward–backward estimator of the phase probability density function, followed by a symbol-by-symbol completion to produce the <emphasis emphasistype="italic">a posteriori </emphasis> probabilities of the information symbols. To practically implement the forward–backward phase estimator, we propose a couple of schemes with different complexity. The resulting algorithms exhibit an excellent performance, and in one case, only a limited complexity increases with respect to the algorithm that perfectly knows the channel phase. The properties of the optimal decoder and the proposed practical decoding schemes are then extended to the case of a generic RI code. The proposed soft-output algorithms can also be used in iterative decoding schemes for concatenated codes employing RI inner components. Among them, in the numerical results, we consider repeat-accumulate codes and other serially concatenated schemes recently proposed in the technical literature. </para>
Read full abstract